
1 Caolán McNamara

Crash Testing and Coverity

The Numbers

Caolán McNamara,
Red Hat
2015-09-25 



2/26 Caolán McNamara

● Coverity
● Examples
● Defect Density
● Trends

● Crash Testing
● Process
● Trends



3

  

Caolán McNamara

Examples



CID#707771 UNINIT_CTOR



CID#1209362 DEADCODE

Copy and Paste from previous 
ImplGetUndefinedAsciiMultiByte 
without corresponding change of 
UNDEFINED_MASK to 
INVALID_MASK



CID#983942 UNCAUGHT_EXCEPT

That doesn't actually specify what it throws



CID#1158113 FORWARD_NULL

Somebody got confused on checking the result of dynamic_cast



CID#704127 CONSTANT_EXPRESSION_RESULT

typo, should be 0x0020 not 0x002, wrong for 14 years
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Defect Density

Last Years density at conference time was 0.08
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Defects over time

Here, “ignored” third party module warnings are counted.
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Process integration

● Now run about twice a week
● Those are the nums of slots coverity makes available to 

a project of this size

● Typically back to back
● One to collect warnings
● One after warnings fixed

● Results now mailed to the list

● Takes about 4-6 hours to build

● Takes about 12+ hours to analyze server-side
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Crash Testing
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What it does

● Loads a bunch of documents
● 118 different columns for formats in output
● Some are now sort of pointless, e.g. staroffice binary 

format
● See if anything crashes or triggers an assert

● Saves a bunch of documents
● Exports to 12 different formats from all the compatible 

import formats
● Export to doc, docx, odb, odg, odp, ods, odt, ppt, pptx, 

rtf, xls, xlsx
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Process integration

● Typically run once or two a week
● Takes about two days to complete

● Approx 80,000 documents in the document horde
● Mostly populated from get-bugzilla-by-mimetype
● + cloudon test documents
● + w3c svg test documents
● + various interesting documents that have caused 

trouble for some app or other in the past
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Horde Updating

● Typically fairly rarely

● Full update takes about 12/13 hours

● Downloads are cached, so only new documents are 
updated

● Bugzilla is trusted wrt the mime-type
● Lots of miscategorized stuff
● Doesn't really matter, rtfs pretending to be docs, etc
● Just made doc import filter look a little worse than it was
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Import Failure Trends
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Build 1 is 31 Oct 2013, final build was 16 Sep 2015
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Export Failure Trends

Build 1 is 31 Oct 2013, final build was 16 Sep 2015
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Triple 0 week

● 20 – 27 August 2015

● 0 coverity warnings

● 0 import failures

● 0 export failures

Then everyone came back from their Summer holidays
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This week

● 4 (fixed) coverity warnings, pending next build

● 0 import failures

● 4 export asserts (2 unique asserts)

● Fairly typical
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Taking the battle onwards
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Generating troublesome documents

● Fuzzing

● Played with CERT bff for a while, some small results

● American Fuzzy Lop is much more fun
● Build with afl-clang/afl-clang++
● “coverage-assisted fuzz testing tool”
● Generates new documents that trigger new internal 

states in the target
● Got to love the UI
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Screen Shot
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Speed #1

● Crucial thing is to be able to cycle fast

● under 100 execs a second is super cruddy

● soffice.bin is ponderous to startup
● 0.18 executions a second for pngs
● Configuration loading and parsing is expensive

● Custom no ui, no config, application
● After much hacking
● 40 executions a second for pngs
● Approximately 200 times faster
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Speed #2

● “Persistent mode”

● Don't exit after each document

● Just loop over the same document again and again

● SIGSTOP to afl controller to signal ready again

● Build with afl-clang-fast/afl-clang-fast++

● Makes something of a difference

● 3000-4000 executions per second with custom loader
● So that's approx 20,000 faster



25/26 Caolán McNamara

Process/Results to date

● Between stock crash testing runs afl runs

● 64 core box

● Currently 20+ instances running for the last month or 
so

● Mostly on a different file format, can run multiple for a 
single file format

● Crashes rare

● Rich source of hangs

● Using afl-cmin minimized corpus of crash testing as 
input
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Thanks for your time
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