
1 Caolán McNamara

Crash Testing and Coverity

The Numbers

Caolán McNamara,
Red Hat
2015-09-25

2/26 Caolán McNamara

● Coverity
● Examples
● Defect Density
● Trends

● Crash Testing
● Process
● Trends

3

Caolán McNamara

Examples

CID#707771 UNINIT_CTOR

CID#1209362 DEADCODE

Copy and Paste from previous
ImplGetUndefinedAsciiMultiByte
without corresponding change of
UNDEFINED_MASK to
INVALID_MASK

CID#983942 UNCAUGHT_EXCEPT

That doesn't actually specify what it throws

CID#1158113 FORWARD_NULL

Somebody got confused on checking the result of dynamic_cast

CID#704127 CONSTANT_EXPRESSION_RESULT

typo, should be 0x0020 not 0x002, wrong for 14 years

9/26 Caolán McNamara

Defect Density

Last Years density at conference time was 0.08

10/26 Caolán McNamara

Defects over time

Here, “ignored” third party module warnings are counted.

11/26 Caolán McNamara

Process integration

● Now run about twice a week
● Those are the nums of slots coverity makes available to

a project of this size

● Typically back to back
● One to collect warnings
● One after warnings fixed

● Results now mailed to the list

● Takes about 4-6 hours to build

● Takes about 12+ hours to analyze server-side

12

Caolán McNamara

Crash Testing

13/26 Caolán McNamara

What it does

● Loads a bunch of documents
● 118 different columns for formats in output
● Some are now sort of pointless, e.g. staroffice binary

format
● See if anything crashes or triggers an assert

● Saves a bunch of documents
● Exports to 12 different formats from all the compatible

import formats
● Export to doc, docx, odb, odg, odp, ods, odt, ppt, pptx,

rtf, xls, xlsx

14/26 Caolán McNamara

Process integration

● Typically run once or two a week
● Takes about two days to complete

● Approx 80,000 documents in the document horde
● Mostly populated from get-bugzilla-by-mimetype
● + cloudon test documents
● + w3c svg test documents
● + various interesting documents that have caused

trouble for some app or other in the past

15/26 Caolán McNamara

Horde Updating

● Typically fairly rarely

● Full update takes about 12/13 hours

● Downloads are cached, so only new documents are
updated

● Bugzilla is trusted wrt the mime-type
● Lots of miscategorized stuff
● Doesn't really matter, rtfs pretending to be docs, etc
● Just made doc import filter look a little worse than it was

16/26 Caolán McNamara

Import Failure Trends

0

50

100

150

200

250

300

350

400

450

Import Crashes

build

fa
ilu

re
s

Build 1 is 31 Oct 2013, final build was 16 Sep 2015

17/26 Caolán McNamara

Export Failure Trends

Build 1 is 31 Oct 2013, final build was 16 Sep 2015

0

500

1000

1500

2000

2500

3000

3500

4000

Export Failures

build

fa
ilu

re
s

18/26 Caolán McNamara

Triple 0 week

● 20 – 27 August 2015

● 0 coverity warnings

● 0 import failures

● 0 export failures

Then everyone came back from their Summer holidays

19/26 Caolán McNamara

This week

● 4 (fixed) coverity warnings, pending next build

● 0 import failures

● 4 export asserts (2 unique asserts)

● Fairly typical

20

Caolán McNamara

Taking the battle onwards

21/26 Caolán McNamara

Generating troublesome documents

● Fuzzing

● Played with CERT bff for a while, some small results

● American Fuzzy Lop is much more fun
● Build with afl-clang/afl-clang++
● “coverage-assisted fuzz testing tool”
● Generates new documents that trigger new internal

states in the target
● Got to love the UI

22/26 Caolán McNamara

Screen Shot

23/26 Caolán McNamara

Speed #1

● Crucial thing is to be able to cycle fast

● under 100 execs a second is super cruddy

● soffice.bin is ponderous to startup
● 0.18 executions a second for pngs
● Configuration loading and parsing is expensive

● Custom no ui, no config, application
● After much hacking
● 40 executions a second for pngs
● Approximately 200 times faster

24/26 Caolán McNamara

Speed #2

● “Persistent mode”

● Don't exit after each document

● Just loop over the same document again and again

● SIGSTOP to afl controller to signal ready again

● Build with afl-clang-fast/afl-clang-fast++

● Makes something of a difference

● 3000-4000 executions per second with custom loader
● So that's approx 20,000 faster

25/26 Caolán McNamara

Process/Results to date

● Between stock crash testing runs afl runs

● 64 core box

● Currently 20+ instances running for the last month or
so

● Mostly on a different file format, can run multiple for a
single file format

● Crashes rare

● Rich source of hangs

● Using afl-cmin minimized corpus of crash testing as
input

26/26 Caolán McNamara

Thanks for your time

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26

