
1
LibreOffice Bern 2014 Conference: A Threading Snarl

A Threading Snarl

Michael Stahl, Red Hat, Inc.
2014-09-04

2
LibreOffice Bern 2014 Conference: A Threading Snarl

Overview

1. Introduction

2. Threading Architecture

3. Common Anti-Patterns

4. Threading Constraints

3
LibreOffice Bern 2014 Conference: A Threading Snarl

Introduction

Why a talk about threading?
years ago somebody at Sun had the glorious idea to test
OOo by remote UNO connection
JUnitTests still provide important test coverage of UNO API
today
what could possibly go wrong?

4
LibreOffice Bern 2014 Conference: A Threading Snarl

Issues with Multi-Threading

too much code needs to be thread-aware
VCL
every method of every UNO component

lots of fragile, un-testable locking all over the place that
doesn't actually work

locking invariants usually undocumented
additional complexity
performance impact of per-method locking / atomic ref-
counting (200k osl_acquireMutex calls on start-up)

very little actual scalability is achieved
from the UI, most things happen on main thread (reliable!)

… but remote UNO connections quite unreliable

5
LibreOffice Bern 2014 Conference: A Threading Snarl

Threading Architecture(s)

2 threading architectures:
VCL: originally single-threaded => big global lock
(SolarMutex/SalYieldMutex)

VCL does not want to be a thread-safe UI toolkit, but is
thread-aware

no single event handling / “GUI” thread
"Multithreaded toolkits: A failed dream?" – Graham Hamilton

UNO: fine-grained per-component locking
UNO components have to be thread-safe

similar to COM "multi-threaded apartment" model
inherent conflict is often resolved by using SolarMutex to lock
UNO components

https://weblogs.java.net/blog/kgh/archive/2004/10/multithreaded_t.html

6
LibreOffice Bern 2014 Conference: A Threading Snarl

Common Anti-Patterns:
Missing Lock

race due to forgetting to lock mutex
happens surprisingly often
every UNO method implementation needs a lock

forgetting to lock mutex in / around C++ destructor
esp. in applications where dtor un-registers in core model
make sure member / superclass destruction is also covered!
sw::UnoImplPtr

7
LibreOffice Bern 2014 Conference: A Threading Snarl

Common Anti-Patterns:
Deadlock

AB-BA deadlock of 2 threads
between 2 mutexes {A,B}

Thread 1 locks mutex A
Thread 2 locks mutex B
Thread 1 tries to lock
mutex B and sleeps
Thread 2 tries to lock
mutex A and sleeps

Example:

void SomeComp::foo()
{
MutexGuard g;
...
callEventListeners();

}

need to unlock MutexGuard before calling out!

[in practice, cannot unlock SolarMutex...]

8
LibreOffice Bern 2014 Conference: A Threading Snarl

Common Anti-Patterns:
Deadlock Via Recursive Mutex

osl::Mutex is recursive,
so instead of trivial self-
deadlocks we get very
subtle deadlocks!

void SomeComp::foo() {
{
MutexGuard g;
...

}
//don't call with lock
callEventListeners();

}
void SomeComp::bar() {
MutexGuard g;
...
foo(); // oops!

}

"A correct and well
understood design does not
require recursive mutexes."

– David Butenhof

http://www.zaval.org/resources/library/butenhof1.html

9
LibreOffice Bern 2014 Conference: A Threading Snarl

Common Anti-Patterns:
Racy Reference Counting

The uno::Reference uses thread-safe atomic instructions

But:
careful when converting C++ pointer to uno::Reference!

valid if newly created (ref-count == 0)
valid if thread already owns a uno::Reference to it

in all other cases: use uno::WeakReference for thread
safety!

for examples see i#105557, fdo#72695

https://issues.apache.org/ooo/show_bug.cgi?id=105557
https://bugs.freedesktop.org/show_bug.cgi?id=72695

10
LibreOffice Bern 2014 Conference: A Threading Snarl

Common Anti-Patterns:
Thread Not Joined

A thread is spawned without any protocol for its lifetime
keeps running during shutdown...

accesses objects that are already deleted by exit handlers...

11
LibreOffice Bern 2014 Conference: A Threading Snarl

UNO Bridges & Bindings (1)

UNO remote bridges (URP): reader / writer threads
Thread-Affine UNO-UNO purpose bridge: 2 threads
Java JNI and URP bridges:

finalizers - typically run in separate finalizer thread
[implementation dependent], call XInterface::release()

currently AsynchronousFinalizer actually moves the
finalizer to yet another thread… [both bridges]

CLI bridge (cli_ure):
finalizers may be called on separate thread and call
XInterface::release()

12
LibreOffice Bern 2014 Conference: A Threading Snarl

UNO Bridges & Bindings (2)

Python:
famous "Global Interpreter Lock" ... should not cause
deadlocks, as it is dropped before calling UNO methods
PyUNO finalizer thread

C++/Java/CLI/Python extensions can spawn threads
BASIC:

inherently single-threaded, runtime calls Reschedule()
periodically

OLE Automation: wraps COM object around UNO object or
the other way, seems to have no obvious threading issue

13
LibreOffice Bern 2014 Conference: A Threading Snarl

VCL

Main thread is running event loop, and always holds
SolarMutex except when event loop calls Yield()

dialogs are executed → Yield() → SolarMutex released!

[important if the dialog spawns worker threads...]
SolarMutexReleaser – scary...

Application::Reschedule() – internal API to release SolarMutex
XToolkit::reschedule() – public UNO API to release SolarMutex

[actually called by some bundled extensions]
com.sun.star.awt.AsyncCallback service allows moving
work to main thread from remote UNO

can work around some threading bugs

14
LibreOffice Bern 2014 Conference: A Threading Snarl

Java UI Toolkits

Swing UI (could be used by extensions):
(mostly) not thread-safe, all events are delivered to one
event handling thread [which is not the main thread!]
if a Swing event handler calls some UNO method it will
happen on separate event handling thread

SWT UI (dito):
no idea, hope nobody is using that in extension

15
LibreOffice Bern 2014 Conference: A Threading Snarl

Unix: GTK+ / Qt

GTK+ thread-aware (gdk_thread_enter/leave)

SolarMutex hooked into GTK+, GDK_THREADS_MUTEX

guarantee Gtk+ and VCL have same idea whether mutex is
locked, for code that calls into Gdk/Gtk+ w/o VCL being
involved
(although some Gtk related libs may release the mutex at
unfortunate times…)
https://developer.gnome.org/gdk3/stable/gdk3-Threads.html

Qt single threaded – all event handling/UI on main thread
how does that work? – badly! can't use KDE dialogs unless
glib main loop integration allows foisting SolarMutex on Qt
with g_main_context_set_poll_func
http://qt-project.org/doc/qt-4.8/thread-basics.html

https://developer.gnome.org/gdk3/stable/gdk3-Threads.html
http://qt-project.org/doc/qt-4.8/thread-basics.html

16
LibreOffice Bern 2014 Conference: A Threading Snarl

Mac OS X

Cocoa is (mostly) not thread-safe
... except some low-level classes (once you spawn a
NSThread)

events get delivered to main thread
NSView's "graphic states" and NSGraphicsContext are
thread-affine
NSView mostly restricted to main thread

https://developer.apple.com/library/mac/documentation/Cocoa/Conceptual/Multithreading/ThreadS
afetySummary/ThreadSafetySummary.html

https://developer.apple.com/library/mac/documentation/Cocoa/Conceptual/Multithreading/ThreadSafetySummary/ThreadSafetySummary.html
https://developer.apple.com/library/mac/documentation/Cocoa/Conceptual/Multithreading/ThreadSafetySummary/ThreadSafetySummary.html

17
LibreOffice Bern 2014 Conference: A Threading Snarl

Win32

COM: main thread in STA, other threads in MTA
(oslCreateThread)

COM STA components (clipboard, drag&drop, file picker)
apparently require running in separate thread
DDE is thread-affine

everything happens on thread calling DdeInitialize

and via Window messages
Win32 Windows are thread-affine, which is a real problem...

construction, destruction, events all on same thread
VCL has to create all Windows on main thread

which cannot actually work currently...

18
LibreOffice Bern 2014 Conference: A Threading Snarl

Win32 VCL Window Deadlock

void
pseudo-win32-message-loop()

{

 SolarMutexReleaser r;

 while (msg=GetMessage()) {

 switch (msg) {

 case FOO:

 {

 SolarMutexGuard g;

 ...

 }

 case SAL_MSG_CREATEFRAME:

 ... // no mutex needed

 }

 }

}

void SomeUNOcomponent
 ::makeMeAView()

{

 SolarMutexGuard g;

 Window *w = new Window;

}

Window::Window()

{

m_pSalFrame = (SalFrame*)
 SendMessage(
 SAL_MSG_CREATEFRAME);

 // <- deadlock here

}

19
LibreOffice Bern 2014 Conference: A Threading Snarl

"I'm worn, tired of my mind
 I'm worn out, thinking of why
 I'm always so unsure"
 – Portishead, "Threads"

Thanks for listening

	Title Slide
	Overview
	Introduction
	Issues with Multi-Threading
	Threading Architecture(s)
	Common Anti-Patterns: Missing Lock
	Common Anti-Patterns: Deadlock
	Common Anti-Patterns: Deadlock Via Recursive Mutex
	Common Anti-Patterns: Racy Reference Counting
	Common Anti-Patterns: Thread Not Joined
	UNO Bridges & Bindings (1)
	UNO Bridges & Bindings (2)
	VCL
	Java UI Toolkits
	Unix: GTK+ / Qt
	Mac OS X
	Win32
	Win32 VCL Window Deadlock
	Last Slide

