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Typical spreadsheet

Name Value1 Value2 Value3

Item1 10 =Value*2 =Value1+Value2

Item2 15 =Value*2 =Value1+Value2

Item3 20 =Value*2 =Value1+Value2

... ... ... ...
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Typical spreadsheet (#2)

Name Value1 Value2 Value3

Item1 10 =Value*2 =Value1+Value2

Item2 15 =Value*2 =Value1+Value2

Item3 20 =Value*2 =Value1+Value2

... ... ... ...

Formula group 1 Formula group 2
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Typical spreadsheet (#3)

Name Value1 Value2 Value3

Item1 10 =Value*2 =Value1+Value2

Item2 15 =Value*2 =Value1+Value2

Item3 20 =Value*2 =Value1+Value2

... ... ... ...

Independent rows
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Parallel calculation

Rows are often “the same” but independent

Modern CPUs do not improve single core performance that much

But they have more cores

-> It makes sense to compute in parallel

● Reasonably simple

● Should scale well

https://www.collaboraoffice.com/
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Implementation

ScFormulaCell

● Each spreadsheet cell

ScFormulaCellGroup

● Grouped cells sharing the same code

Make each thread calculate different cells in the same group

https://www.collaboraoffice.com/
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Lockless (mostly)

Threads operate on separate data → no need to lock

Shared instances → per-thread instances

Lock only if needed or if not performance critical

https://www.collaboraoffice.com/
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For more details,

talk by Tor from 2017

https://www.collaboraoffice.com/


Problems
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Static data

static OUString myCachedValue;

● Use thread_local

● Simply remove the optimization

● Add locking, if worth it (local mutex)

● ScInterpreterContext

● ...

https://www.collaboraoffice.com/


Collabora Productivity www.collaboraoffice.co
m

Storing state in classes

class … { … int currentIndex; … };

● Protect class use with a mutex

● Move state to its own class (e.g. iterators)

● Move state to a function parameter

This includes also various caching.

https://www.collaboraoffice.com/
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On-demand initialization

If( singleton == nullptr ) singleton = new Singleton;

● use C++11 thread-safe statics (required now by LO build)

● static Singleton* singleton = new Singleton;

● Leaks memory

● Singleton* getSingleton() { static Singleton s; return &s; }

● Either case cannot be cleaned up

● comphelper::doubleCheckedInit( singleton, []() { return new 

Singleton; } )

https://www.collaboraoffice.com/
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Unsafe code

A lot of library code is not thread-safe (even our code)

● Fix the code (if possible)

● Add locking to the code (if worth it)

● Protect code use from Calc with a mutex 

https://www.collaboraoffice.com/
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SolarMutex

SolarMutex is still held by main thread while threaded calculation 

is in progress

● If not done, other threads might interfere (UNO calls, clipboard 
thread)

→ Calculation threads may not access code requiring SolarMutex

Maybe needs a solution for some cases ???

● Transfer SolarMutex ownership?

● Ask main thread to perform an operation?

https://www.collaboraoffice.com/
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Threaded calc assert

assert(!IsThreadedGroupCalcInProgress());

● Code is not meant to be run in threads

● Use the proper function (if exists)

● Make sure code in threads does not modify spreadsheet

https://www.collaboraoffice.com/
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ScMutationGuard assert

Code in calculation threads should not modify the document

● (Except for calculating cell results)

● Check your code

● Move code outside of calculation threads

https://www.collaboraoffice.com/
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Unsupported opcode/type

INDIRECT()  (ocIndirect) – may possibly make cells dependent

ocExternal – external functionality (UNO calls)

● Hard to check all code

● May easily deadlock (SolarMutex)

DDE() (ocDDE) – LinkManager class uses extensive caching without 

locking

External references – ScExternalRefManager uses extensive caching 

without locking

https://www.collaboraoffice.com/
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Unsupported opcode/type (#2)

Simply blacklist all formulas containing problematic 

opcodes/types

ScTokenArray::CheckForThreading()

https://www.collaboraoffice.com/
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ScInterpreterContext

Per-thread data structure, pointer to it passed around

Per-thread class instances

● ScDocument::GetFormatTable() → context→mpFormatter

https://www.collaboraoffice.com/
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ScInterpreterContext (#2)

Caches (VLOOKUP)

● Finding result of VLOOKUP may be expensive

● Same lookup used several columns in the same row

● Values must survive between thread invocations

● SetupFrom/MergeBackIntoNonThreadedContext()

https://www.collaboraoffice.com/
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ScInterpreterContext (#3)

Moving operation to the main thread

● ScDocument::setNumberFormat() is not thread-safe

● Calls to it can be postponed

● Save relevant data in ScInterpreterContext

● Actual call(s) performed by main thread after calculation 
threads finish

https://www.collaboraoffice.com/
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Add asserts

assert(!IsThreadedGroupCalcInProgress());

● Add wherever need (especially if unsure)

https://www.collaboraoffice.com/
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Helgrind (Valgrind)

Detecting thread problems from the Valgrind tools suite

● VALGRIND=helgrind start_lo.sh

● Slow

● Can still save time when finding difficult problems

https://www.collaboraoffice.com/
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Ensure threaded calculation is used

Threads vs OpenCL vs normal (non-threaded)

● Modify settings in UI

● Temporarily hardcode in CalcConfig class functions

Test even with small formula groups

● Group calculation is normally used only for larger groups

● mnOpenCLMinimumFormulaGroupSize

● Should be improved to make possible running tests for 
everything with the wanted calculation method

https://www.collaboraoffice.com/
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Thank you.

By Luboš Luňák
l.lunak@collabora.com
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